Journal of Organometallic Chemistry, 412 (1991) 251–258 Elsevier Sequoia S.A., Lausanne JOM 21770

Synthesis, structure determination and catalytic activity of (+)-cis-[dicarbonyl- μ -chloro- μ -[5 β -methyl-2 α -(1-methylethyl)cyclohexanethiolato]]bis[tris(1,1-dimethylethyl)arsine]dirhodium

Herbert Schumann *, Boris Gorella

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, W-1000 Berlin 12 (Deutschland)

Moris Eisen and Jochanan Blum *

Department of Organic Chemistry, Hebrew University, Jerusalem 91904 (Israel) (Received November 20th, 1990)

Abstract

The title compound, 5, which is the first dirhodium complex to contain both arsenic and a chiral substituent, has been synthesized from $[Rh(CO)_2]_2(\mu-Cl)_2$, As(^tBu)₃ and (+)-(neomenthanethio)trimethylsilane. The complex was found to catalyze the hydrogenation of methyl *N*-acetamidocinnamate, albeit with low enantioselectivity. X-Ray diffraction studies revealed that 5 exists in the crystal as a pair of epimers.

Introduction

The superior ability of dinuclear complexes to catalyze multi-substrate reactions [1] has been demonstrated in our laboratories by application of dirhodium compounds of general formula cis-[(⁺Bu₃P)(CO)Rh]₂(μ -Cl)(μ -SR) to various organic hydrogen transfer processes [2–5]. Modification of these complexes, either by substitution of the bulky phosphine ligands, or by changing the nature of the sulfur-bound R group, proved to affect their catalytic properties greatly. For example, a substantial rate increase was observed in hydrogenation of cyclohexene either upon replacement of the tertiary phosphine by arsine [6], or upon attachment of the dirhodium complexes to insoluble supports [3–5]. Introduction of a chiral tertiary phosphine ligand into the various dirhodium compounds gave enantioselective hydrogenation catalysts [7].

We now report the preparation of (+)-cis-[dicarbonyl- μ -chloro- μ -[5 β -methyl-2 α -(1-methylethyl)cyclohexanethiolato]]bis[tris(1,1-dimethylethyl)arsine]dirhodium (5), which is the first dirhodium complex to contain both arsenic and a chiral substituent.

Results and discussion

The synthesis of **5** was accomplished by reaction of $[Rh(CO)_2]_2(\mu-Cl)_2$ (1) with two equivalents of ^tBu₃As (2) (eq. 1), followed by one equivalent (+)-(neomenthanethio)trimethylsilane ([1S-(1 α ,2 α ,5 β)][5-methyl-2-(1-methylethyl)cyclohexanethio]trimethylsilane) (4) (eq. 2).

$$[Rh(CO)_2]_2(\mu-Cl)_2 + 2^t Bu_3 As \rightarrow [(^tBu_3 As)(CO)Rh]_2(\mu-Cl)_2 + 2CO$$
(1)
(1) (2) (3)

$$3 + (+) - Me_3 SiSR \rightarrow (+) - cis - \left[\left({}^{t}Bu_3 As \right) (CO) Rh \right]_2 (\mu - Cl) (\mu - SR) + Me_3 SiCl \qquad (2)$$
(4)
(5)

 $(R = 5\beta$ -methyl-2 α -(1-methylethyl)cyclohexyl)

The intermediate 3 exists in solution as a mixture of isomers. When the reaction is conducted in the cold or left to stand for a prolonged period prior to the addition of 4, the *trans*-isomer of 3, which reacts only very slowly with the thio-ether, separates.

X-Ray diffraction analysis of a crystal of 5 (see Tables 1 and 2) revealed that each unit cell consists of two cis-oriented epimers: one pair in which the chiral moiety has the (1R, 2R, 5S)-configuration, and one in which it has the (1S, 2R, 5S)configuration. (See Fig. 1 for a stereoscopic view of one half of the unit cell). The ORTEP drawings of the two isomers of 5 are presented in Fig. 2a and 2b. By placing these two figures in such a way that the atoms of both molecules-with the exception of those of the chiral portion-are superimposed, one can see that C(1)-C(3) of the cyclohexane moieties are also superimposable. In such an arrangement C(5) of one epimer occupies position C(7) in the other and vice versa. The cyclohexane ring which is attached to the sulfur bridge by the secondary C(1) atom occupies a pseudo-axial position in the dimetallacyclobutane structure in a similar fashion as in cis-[dicarbonylbis(tri-tert-butylphosphine)dirhodium [8]. This configuration of 5 is opposite to that found in compounds in which the R group is attached to the sulfur through a primary carbon atom (e.g., in (-)-cis-fdicarbonyl- μ -chloro-(6,6-dimethylbicyclo[3.1.1]heptane-2-methanethiolato)bis[tris(1,1-dimethylethyl)phosphine]dirhodium [9]).

Formula	C ₃₆ H ₇₃ As ₂ ClO ₂ SRh ₂	$V(Å^3)$	2159(1)
Molecular weight	961.1	Z	2
Crystal system	triclinic	$\rho_{\rm calcd}, {\rm g \ cm^{-3}}$	1.48
Space group	PĪ	$\mu(\text{Mo-}K_{\alpha}), \mu^{-1}$	22.97
a (Å)	16.290(6)	No. of unique reflections	5593
b (Å)	14.224(4)	No. of reflections with $I \ge 3\sigma(I)$	4292
c (Å)	10.066(6)	R	0.065
α(°)	109.77(3)	R _w	0.085
β(°)	93.18(2)	w^{-1}	$\sigma_F^2 + 0.000691 \cdot F^2$
γ(°)	79.62(3)		-

Table 1					
Crystal data	and	refinement	details	for	5

Tractional atomic coordinates for 5 (est 5 in parentineses)							
Atom	x	у	Z	Atom	x	у	Z
Rh(1)	0.26904(6)	0.26431(7)	0.3270(1)	C(12)	0.1759(8)	0.571(1)	0.613(1)
Rh(2)	0.22399(5)	0.50910(7)	0.44518(9)	C(13)	0.293(1)	0.150(1)	-0.074(1)
As(1)	0.24645(7)	0.13129(9)	0.1001(1)	C(14)	0.294(1)	0.062(1)	- 0.213(2)
As(2)	0.14868(8)	0.63894(9)	0.3470(1)	C(15)	0.380(1)	0.177(1)	-0.037(2)
S	0.2930(2)	0.3870(2)	0.5433(3)	C(16)	0.238(1)	0.244(1)	-0.098(2)
Cl	0.2997(2)	0.3924(2)	0.2356(3)	C(17)	0.1206(8)	0.136(1)	0.079(2)
O(1)	0.2143(8)	0.1629(8)	0.505(1)	C(18)	0.093(1)	0.085(1)	-0.080(2)
O(2)	0.1468(6)	0.6035(8)	0.726(1)	C(19)	0.091(1)	0.088(1)	0.178(2)
C(1,1')	0.4062(7)	0.3954(9)	0.537(1)	C(20)	0.0824(9)	0.251(1)	0.124(2)
C(2)	0.438(2)	0.455(2)	0.691(3)	C(21)	0.2973(8)	-0.014(1)	0.092(1)
C(3,3')	0.440(1)	0.383(2)	0.778(2)	C(22)	0.257(1)	-0.096(1)	~0.027(2)
C(4)	0.489(2)	0.290(4)	0.735(4)	C(23)	0.395(1)	-0.032(1)	0.061(2)
C(5,7')	0.4635(9)	0.221(1)	0.559(2)	C(24)	0.2881(9)	~0.025(1)	0.233(2)
C(6)	0.455(2)	0.291(2)	0.479(3)	C(25)	0.154(1)	0.787(1)	0.474(2)
C(7,5')	0.3955(8)	0.558(1)	0.756(1)	C(26)	0.141(1)	0.795(1)	0.623(2)
C(8)	0.384(2)	0.623(3)	0.656(4)	C(27)	0.239(1)	0.806(1)	0.453(2)
C(9)	0.434(2)	0.629(4)	0.884(3)	C(28)	0.082(1)	0.867(1)	0.440(2)
C(10)	0.520(2)	0.124(3)	0.525(6)	C(29)	0.0269(7)	0.621(1)	0.328(2)
C(2')	0.464(2)	0.330(2)	0.612(3)	C(30)	-0.014(1)	0.658(1)	0.476(2)
C(4')	0.450(2)	0.482(3)	0.834(3)	C(31)	-0.028(1)	0.675(1)	0.237(2)
C(6')	0.416(2)	0.511(2)	0.602(3)	C(32)	0.030(1)	0.501(1)	0.261(2)
C(8')	0.484(2)	0.175(2)	0.392(3)	C(33)	0.1891(9)	0.626(1)	0.149(1)
C(9')	0.529(2)	0.163(2)	0.633(4)	C(34)	0.156(1)	0.716(1)	0.102(2)
C(10')	0.435(4)	0.650(4)	0.812(5)	C(35)	0.169(1)	0.528(1)	0.043(2)
C(11)	0.2364(8)	0.195(1)	0.428(1)	C(36)	0.288(1)	0.615(1)	0.159(2)

Fractional atomic coordinates for 5 (esd's in parentheses)

Table 2

The formation of 5 as a 1:1 mixture of epimers by use of 4 of > 99.5% optical purity (as indicated (i) by Horeau's method [10], (ii) by the chiral lanthanide shift reagent technique, and (iii) by hydrolysis to give > 99.5% optically pure (+)-

Fig. 1. Stereoscopic view of one half unit cell of 5.

Fig. 2. ORTEP drawings of (a) the 1R, 2R, 5S-isomer of **5b** and (b) the 1S, 2R, 5S-isomer of **5b**.

neomenthanethiol [11]), suggests that the replacement of one chlorine atom in intermediate 3 involves the reversible formation of a complex of type 6. The suggestion that 6 is generated is supported by the observation that some chlorinebridged dirhodium complexes are capable of inducing reversible β -hydrogen elimination [2,5].

Complex 5 was shown to be a highly active hydrogenation catalyst for unhindered alkenes. Cyclohexene e.g., is transformed by 5 to cyclohexane at a comparable rate to that of hydrogenation in the presence of the Wilkinson catalyst [12]. Sterically hindered C=C bonds were found to be reduced much more slowly. The complex was shown to promote asymmetric hydrogenation of some prochiral substrates such as methyl N-acetamidocinnamate (7) (eq. 3). Its enantioselectivity,

Z-PhCH=C(NHCOMe)(COOMe) + H₂
$$\xrightarrow{5}$$

S-(+)-PhCH₂CH(NHCOMe)(COOMe) (3)

however, proved inferior to that of our neomenthyldiphenylphosphine dirhodium catalyst [7]. After 20 h, e.g., the hydrogenation of 7 in a 1:2 mixture of MeOH-PhH at 120 °C and 100 psi H_2 furnished 16% of the (+)-N-acetylphenylalanine methyl ester (8), in only 22% ee. When the reaction was conducted in pure PhH, the reduction rate increased (63, 77 and 98% yield were obtained after 30, 60 and 120 min, respectively), but the corresponding ee values were only 10, 8, and 0%. We attribute the low optical purity in part to the existence of 5 as pairs of epimers, and in part to the catalytic hydrogen scrambling in the initially formed optically active product [13].

Experimental

(+)-(Neomenthanethio)trimethylsilane (4)

To a stirred solution of 10.52 g (61 mmol) of > 99.5% optically pure (+)neomenthanethiol [11] in 40 cm³ of EtOH under Ar was added a solution of 11.64 g (30 mmol) of Pb(OAc)₂ · 3H₂O in 350 cm³ of H₂O. The mixture was stirred for 24 h at room temperature. The yellow precipitate was washed successively with EtOH and dried at 0.05 mm to give 14.52 g (87%) of the lead salt of neomenthanethiol. M.p. 182°C (dec.); $[\alpha]_D^{20} = +22.5^\circ$ (c = 0.2, CHCl₃). Found: C, 43.75; H, 6.92. C₂₀H₃₈PbS₂ (549.84) calcd.: C, 43.68; H, 6.98%.

A stirred mixture of 14.11 g (26 mmol) of the lead salt and 20 cm³ of freshly distilled Me₃SiCl was refluxed under Ar for 10 days. The PbCl₂ was filtered off and washed twice with 10 cm³ of Me₃SiCl. The excess of Me₃SiCl was removed under reduced pressure and the residue was distilled at 0.1 mm to give 10.75 g (85%) of 4. B.p. 91°C (0.1 mmHg); $[\alpha]_D^{20} = +80.4^\circ$; ¹H-NMR (300 MHz, C₆D₆): δ 0.238 (s, 9H, Si(CH₃)₃); 0.768-0.831 (m, 3H); 0.859-1.018 (m, 9H, CH(CH₃)₂, CH₃); 1.157-1.251 (m, 1H); 1.478-1.865 (m, 4H); 2.206-2.228 (m, 1H); 3.334 (dt, 1H,

 $J_d = 2.4$ Hz, $J_t = 2.5$ Hz, CHS). ¹³C{¹H} NMR (75 MHz, C₆H₆): δ 1.77 (Si(CH₃)₃); 20.96, 21.08, 22.40, 25.28, 26.08, 30.17, 35.90, 43.16, 45.24, 50.06 (CHS). Found: C, 63.94; H, 11.48. C₁₃H₂₈SSi (244.52) calcd.: C, 63.86; H, 11.54%.

Preparation of 5

To a stirred solution of 300 mg (0.77 mmol) of 1 in 30 cm³ of n-pentane at 20 °C under Ar was added a solution of 365 mg (1.48 mmol) of ^tBu₃As in 20 cm³ of the same solvent. The mixture was warmed during 30 min to 35°C and kept for 2 h at this temperature, and a solution of 188 mg (0.77 mmol) of 4 in 20 cm³ of n-pentane was added. Stirring was continued for 4 h and the pale orange micro-crystals of 5 then filtered off under Ar and washed three times with 3 cm³ of n-pentane. Crystallization from a 1:1 mixture of degassed CH₂Cl₂ and pentane afforded 460 mg (62%) of 5. M.p. 190–205 °C (dec.). $[\alpha]_D^{20} = +7.9^{\circ}$ (c = 0.052, PhH); IR (KBr): ν (CO) 1950, 1960 cm⁻¹; ¹H-NMR (200 MHz, C₆D₆): δ 0.831–0.899 (m, 1H); 1.087 (d, 3H, J = 6.6 Hz, CH_3CHCH_3); 1.153 (d, 3H, J = 6.6 Hz, CH_3CHCH_3); 1.231– 1.274 (m, 1H); 1.431 (s, 54H, As[C(CH₃)₃]₃); 1.599-1.617 (m, 2H); 1.705 (d, 3H, J = 6.6 Hz, CHCH₃); 1.741–1.903 (m, 1H); 2.010–2.258 (m, 1H); 2.655–2.964 (m, 2H); 3.667–3.875 (m, 1H); 4.310 (m, 1H, CHS); 13 C-NMR (75 MHz, C₆D₆): δ 21.56, 22.88, 23.66, 25.20, 26.64, 30.46, 32.52, $(As[C(CH_3)_3]_3);$ 36.49, 43.16 $(As[C(CH_3)_3]_3); 50.17, 51.50, 51.63, 188.35 (d, {}^1J(Rh, C) = 40.1 Hz, Rh-CO).$ Found: C, 44.89; H, 7.80. C₁₆H₇₃As₂ClO₂Rh₂S (961.15) calcd.: C, 44.99; H, 7.66%.

X-Ray crystal structure analysis of 5

A suitable crystal was obtained by slow recrystallization from benzene. Data were measured on a PW1100/20 Philips Four-Circle Computer-Controlled Diffractometer. Mo- K_{α} ($\lambda = 0.71069$ Å) radiation with a graphite crystal monochromator in the incident beam was used. The unit cell dimensions were obtained by a least-squares fit of 20 centered reflections in the range of $10 \le \theta \le 13^{\circ}$. Intensity data were collected using the $\omega - 2\theta$ technique to a maximum 2θ of 45°. The scan width, $\Delta\omega$, for each reflection was $1.00 + 0.35 \cdot \tan \theta$ with a scan speed of 3.0 deg/min. Background measurements were made for a total of 20 s at both limits of each scan. Three standard reflections were monitored every 60 min. No systematic variations in intensities were found.

Intensities were corrected for Lorentz and polarization effects. All non-hydrogen atoms were found by a SHELXS-87 direct-method analysis [14]. Refinement proceeded to convergence by minimization of the function $\sum w(|F_o| - |F_c|)^2$. A final difference Fourier synthesis map showed several peaks less than 1.1 e/Å³ scattered about the unit cell.

The discrepancy indices, $R = \sum ||F_o| - |F_c||/\sum |F_o|$ and $R_w = \sum w(|F_o| - |F_c|)^2/\sum w|F_o|^2$ are shown, with other pertinent crystallographic data, in Table 1. Selected positional parameters, bond lengths and angles are given in Tables 2 and 3. Lists of positional parameters for the various hydrogen atoms, anisotropic thermal parameters, and observed and calculated structure factors for 5 are available from the authors.

Hydrogenation of Z-methyl α -acetamidocinnamate (7)

Typically a mixture of 184.5 mg (0.84 mmol) of 7, 49 mg (0.042 mmol) of 5, 10 cm^3 of PhH and 5 cm^3 of MeOH was placed in a mini-autoclave, purged with Ar and

Table 3
Selected bond lengths (Å) and bond angles (°) for 5 (esd's in parentheses)

Bond lengths	-						
Rh(1)-As(1) 2.4	183(1)	C(1,1')-C(2')	1.55(3)		C(13)-C(14)	1.53(2)	
Rh(1)-S 2.3	350(3)	C(1,1')-C(6')	1.58(3)		C(13)-C(15)	1.54(2)	
Rh(1)-Cl 2.4	135(4)	C(2) - C(3,3')	1.55(4)		C(13)-C(16)	1.55(2)	
Rh(1)-C(11) 1.8	30(2)	C(2)-C(7,5')	1.44(3)		C(17)-C(18)	1.59(2)	
Rh(2) - As(2) = 2.4	185(2)	C(3,3') - C(4)	1.35(5)		C(17)-C(19)	1.52(3)	
Rb(2) = S 2.3	364(4)	C(3,3') = C(2')	1.62(3)		C(17) - C(20)	1.56(2)	
Rh(2)-Cl 2.4	130(3)	C(3,3') = C(4')	1.36(4)		C(21) - C(22)	1.57(2)	
Rh(2) - C(12) = 1	77(1)	C(4) = C(5,7')	1.78(4)		C(21) - C(23)	1.60(2)	
$A_{s}(1) = C(13)$ 20	7(2)	C(57') = C(6)	1 47(4)		C(21) = C(24)	1 49(2)	
$A_{s(1)} = C(17) = 2.0$)4(1)	C(5,7') = C(10)	1 46(3)	•	C(25) = C(26)	1 49(3)	
$A_{s}(1) = C(11) = 2.0$	X(1)	C(5,7') = C(2')	1.47(3)		C(25) = C(27)	1 49(3)	
$A_{2}(1) = C(21) = 2.0$))(1))7(1)	C(5,7') - C(2')	1.47(3)		C(25) = C(27)	1.40(3)	
$A_{S}(2) = C(23) = 2.0$)/(1)	C(5,7) = C(6')	1.01(3)		C(23) = C(20)	1.57(2)	
As(2) = C(29) = 2.0	99(1) 97(1)	C(3,7) = C(9)	1.55(4)		C(29) = C(30)	1.54(2)	
AS(2) = C(33) = 2.0	7 (1)	(7,5) = (1,0)	1.03(4)		(29) - (31)	1.00(2)	
$S = C(1, 1^{\circ})$ 1.8	37(1)	(7,5) - (1,9)	1.53(4)		(29) - (32)	1.60(2)	
O(1) = C(11) 1.1	12(2)	$C(7,5^{\circ}) - C(4^{\circ})$	1.65(4)		C(33)-C(34)	1.51(2)	
O(2) - C(12) 1.	7(2)	$C(7,5^{\circ})-C(6^{\circ})$	1.49(3)		C(33)-C(35)	1.51(2)	
C(1,1')-C(2) 1.0	50(3)	C(7,5')-C(10')	1.49(6)		C(33)-C(36)	1.60(2)	
C(1,1')-C(6) 1.4	19(3)						
Rond angles							-1
$A_{s(1)}$ -Rh(1)-S	178 5(1)	C(2) = C(1, 1') = C(6)	۱ ⁻	12(2)	C(14)_C(13)_C	7(16)	107(1)
$A_{s(1)} = Rh(1) = C1$	99 1(1)	C(2') = C(1,1') = C(0)	, 1 5') 1	11(2)	C(15) = C(13) = 0	7(16)	107(1)
$A_{c}(1) = Rh(1) = C(11)$	92 25(5)	C(1,1') = C(2) = C(3)	31 10	06(2)	$A_{\alpha}(1) = C(17) = C(17)$	(10)	113(1)
S P (1) C (1) = C (11)	81 8(1)	C(1,1') = C(2) = C(3)	5/1	16(2)	$A_{0}(1) = C(17) = C(17)$	(10) (10)	100(1)
S = NI(1) = C(11)	87.0(5)	(1,1) - (1,2) - (1,1)	5 J I. 5 J I.	17(7)	$A_{0}(1) = C(17) = C(17)$	×12)	105(1)
S = KII(1) = Q(11)	67.0(3) 116.7(6)	(3,3) = (2) = (1),	,) I. \ 1'	17(2) 20(2)	AS(1) = C(17) = C(17) = C(17)	(20) T(10)	113(1)
$C_{1} = K_{1}(1) = C_{1}(1)$	110.7(0)	(12) - (13,3) - (14)) L 4/\ 1'	20(2)	(10) - (17) -	(19) (19)	112(1)
As(2) - Rn(2) - S	1/8.5(1)	(12) - (13,3) - (14)	4) L.	14(2)	(18) - ((17)	(20)	10/(1)
As(2)-Rh(2)-Cl	99.80(8)	(3,3) - (4) - (3,3)	,/) 1	10(3)	(19) - (17) -	(20)	111(1)
As(2) - Rn(2) - C(12)	92.7(4)	(4) - (15,7) - (16)		0/(2)	As(1) = C(21) = C(21	(22)	112(1)
S-Rh(2)-Cl	81.6(1)	$C(4) - C(5,7^{*}) - C(1)$	0) 10	05(3)	As(1) = C(21) = C	(23)	108.2(9)
S-Rh(2)-C(12)	85.9(5)	C(6)-C(5,7')-C(1)	0) 1.	26(3)	As(1)-C(21)-C	(24)	110(1)
Cl-Rh(2)-C(12)	167.2(5)	$C(2^{\prime})-C(5,7^{\prime})-C(5,7^{\prime})$	8) 1	11(2)	C(22) - C(21) - C(21	(23)	109(1)
Rh(1) - As(1) - C(13)	114.0(4)	C(2')-C(5,7')-C(5,7')	9') 1	12(2)	C(220-C(21)-0	C(24)	111(1)
Rh(1)-As(1)-C(17)	106.6(5)	C(8')-C(5,7')-C(5,7')	9') 10	07(2)	C(23)-C(21)-C	C(24)	107(1)
Rh(1)-As(1)-C(21)	114.2(5)	C(1,1')-C(6)-C(5,	,7′) 1:	20(2)	As(2)-C(250-0	C(26)	108(1)
C(13)-As(1)-C(17)	109.1(6)	C(2)-C(7,5')-C(8)) 1	15(2)	As(2)-C(25)-C	(27)	107(1)
C(13)-As(1)-C(21)	106.1(6)	C(2)-C(7,5')-C(9)) 12	20(3)	As(2)-C(25)-C	C(28)	113(1)
C(17)-As(1)-C(21)	106.5(6)	C(8)-C(7,5')-C(9)) (98(2)	C(26)-C(25)-C	C(27)	111(1)
Rh(2) - As(2) - C(25)	113.7(4)	C(4')-C(7,5')-C(6)	6') 10	07(2)	C(26)-C(25)-C	(28)	106(2)
Rh(2)-As(2)-C(29)	106.6(4)	C(4')-C(7,5')-C(10') 10	03(3)	C(27)-C(25)-C	(28)	112(1)
Rh(2) - As(2) - C(33)	114.8(4)	C(6')-C(7.5')-C	10/) 10	08(3)	As(2)-C(29)-C	230)	110(1)
C(25) - As(2) - C(29)	108.5(7)	C(1,1')-C(2')-C(2')	3.31 10	05(2)	As(2)-C(29)-C	<u>x</u> 31)	116(1)
C(25) - As(2) - C(33)	105.8(6)	C(1,1') - C(2') - C(2')	5.71	17(2)	As(2)-C(29)-C	<u>)</u> (32)	105(1)
C(29) = As(2) = C(33)	107 1(6)	C(3,3') = C(2') = C(2')	571	13(2)	C(30 - C(29) - C	(31)	108(1)
$R_{h(1)} = S = R_{h(2)}$	86 6(1)	C(3,3') = C(4') = C(1')	751 1	15(2)	C(30) = C(29) = 0	$\gamma(32)$	109(1)
$R_{h}(1) = S_{-C}(1, 1')$	104 6(5)	C(11') = C(6') = C(11')	751 1	14(2)	C(32) = C(29) = C(29	(32)	110(1)
Rh(2) - S - C(1,1')	104.0(4)	$R_{b}(1) = C(11) = O(1)$	1'	71(2)	$A_{9}(2) - C(33) - C$	~(34)	115(1)
$R_{h}(1) = C_{1} = R_{h}(2)$	83 3(1)	Rh(2) = C(12) = O(1)	/ I	73(1)	A = (7) - C(33) - C(7(35)	109 1/91
$S_{1}C(1,1^{\prime})=C(2)$	110(1)	$\Delta s(1) = C(13) = C(14)$, I 1, 1 [,]	16 2(9)	A = (2) - C(33) - C(7(36)	106(1)
S = Q(1,1) = Q(2)	100(1)	$\Delta_{c}(1) = C(13) = C(14)$	·/ 1	13.2(7) 08(1)	C(34) = C(33) = C(33)	7(35)	111(1)
S = Q(1,1) = Q(0)	103(1)	$A_{\alpha}(1) = C(13) = C(13)$	7) I 5) 14	08(1)	C(34) = C(32) = C(32)	-(36) -(36)	108(1)
S = Q(1,1) = Q(2)	109(1)	C(14) C(13) = C(10)	77 IV 53 1*	11(1)	C(35) = C(33) = C(33)	2,00) 7(26)	100(1)
5-(1,1)-(10)	106(1)	Q14)-Q13)-Q13	ין ר	11(1)	(33)-(33)-((00)	109(1)

charged with 100 psi H₂. The stirred mixture was kept at 120 ± 0.5 °C for 20 h. The solvent was evaporated off and the residue chromatographed on alumina, with mixtures of MeOH-CH₂Cl₂ as eluent. It was subjected to GC and and optical-activity analysis and its NMR spectrum was recorded.

Acknowledgements

We thank Dr. Shmuel Cohen for his help in the X-ray analysis, and the Deutsche Forschungsgemeinschaft, as well as the exchange program between the Technical University of Berlin and the Hebrew University of Jerusalem, for financial support of this study. We also thank Degussa, Hanau, for a valuable gift of rhodium chloride.

References

- 1 R. Poilblanc, Inorg. Chim. Acta, 62 (1982) 75.
- 2 H. Schumann, G. Cielusek, S. Jurgis, E. Hahn, J. Pickardt, J. Blum, Y. Sasson and A. Zoran, Chem. Ber., 117 (1984) 2825.
- 3 M. Eisen, J. Blum, H. Schumann and S. Jurgis, J. Mol. Catal., 31 (1985) 317.
- 4 M. Eisen, T. Bernstein, J. Blum and H. Schumann, J. Mol. Catal., 43 (1987) 199.
- 5 M. Eisen, T. Korpal, J. Blum and H. Schumann, J. Mol. Catal., 61 (1990) 19.
- 6 H. Schumann, S. Jurgis, E. Hahn, J. Pickardt, J. Blum and M. Eisen, Chem. Ber., 118 (1985) 2738.
- 7 M. Eisen, J. Blum, H. Schumann and B. Gorella, J. Mol. Catal., 56 (1989) 329.
- 8 H. Schumann, G. Cielusek and J. Pickardt, Angew. Chem., 92 (1980) 60; Angew. Chem., Int. Ed. Engl., 19 (1980) 70.
- 9 M. Eisen, P. Weitz, S. Shtelzer, B. Gorella, H. Schumann and J. Blum, Proc. 54th Annual Meeting, Isr. Chem. Soc., Tel-Aviv, Feb. 1990, p. 13.
- 10 J.P. Vigneron, M. Dhaenes and H. Horeau, Tetrahedron, 29 (1973) 1055.
- 11 B. Strijtreen and R.M. Kellogg, J. Org. Chem., 51 (1986) 3664.
- 12 J.A. Osborn, F.H. Jardine, J.F. Young and G. Wilkinson, J. Chem. Soc. (A), (1966) 1711.
- 13 M. Eisen, J. Blum, G. Höhne, H. Schumann, H. Schwarz, Chem. Ber., 122 (1989) 1599.
- 14 G.M. Sheldrick, Crystallographic Computing, Vol. 3, Oxford University Press, 1985, pp. 175-189.